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Hawking-Unruh phenomenon in the parton language

D. Kharzeeva

Nuclear Theory Group, Brookhaven National Laboratory, 11973 Upton, NY, USA

Received: 2 December 2005 /
Published online: 30 August 2006 – c© Società Italiana di Fisica / Springer-Verlag 2006

Abstract. Inelastic hadron interactions at high energies are accompanied by a pulse of a strong chromo-
electric field. This field leads to the decay of QCD vacuum which proceeds through the emission of partons
with a thermal spectrum. In a semi-classical treatment, the effective temperature of the spectrum is
determined by the acceleration of partons in the classical chromo-electric field, in accord with the general
arguments given by Hawking and Unruh.

PACS. 24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes – 25.75.Nq Quark decon-
finement, quark-gluon plasma production, and phase transitions – 11.15.Kc Classical and semiclassical
techniques – 12.38.Mh Quark-gluon plasma

1 Introduction

There is an old but unsolved puzzle in the data on hadron
production in various processes, from e+e− annihilation
and deep-inelastic scattering to heavy-ion collisions: the
relative abundances of different hadron species appear to
follow the statistical distribution with a surprising accu-
racy (for reviews, see, e.g., [1,2]). Moreover, at small trans-
verse momenta the spectra of the produced hadrons also
look approximately thermal. While in heavy-ion collisions
it is possible to expect the emergence of statistical distri-
butions as a result of intense re-interactions between the
produced particles, this seems very implausible in e+e−

annihilation at high energies
√
s, where the process of

hadronization is stretched in space over a long distance
∼ √s/2µ2 and the density of produced hadrons is small
(µ ∼ ΛQCD is an infrared cut-off describing the hadroniza-
tion scale).

Statistical distributions may emerge as a result of the
saddle point approximation to the multi-particle phase
space, when the dynamics is inessential and the produc-
tion mechanism is “phase space dominated” (see, for ex-
ample, [3] and references therein). However, in e+e− anni-
hilation this mechanism can hardly be expected to work:
the jet structure, the angular distributions of the pro-
duced hadrons, and inter-jet correlations point to the all-
important role of QCD dynamics of gluon radiation (for
a recent review, see [4]), and thus the “phase space dom-
inance” cannot be invoked. It thus looks natural to think
that the emergence of statistical hadron abundances has
something to do with the process of hadronization —in
other words, with the way in which the QCD vacuum re-

a e-mail: kharzeev@bnl.gov

sponds to the external color fields, as was advocated by
Dokshitzer [4].

This attractive and deep idea however does not yet al-
low one to understand why the vacuum response to the
external carriers of color field leads to the emergence of
statistical distributions. To do this, we are forced to dis-
cuss the structure of the QCD vacuum. Little is known
about it, but we do know that QCD vacuum is populated
by the fluctuations of color fields, some of which are of
semi-classical nature [5]. It may therefore be useful to ex-
amine what is known at present about the interactions of
charged quanta with background classical fields.

This logic will first lead us to the discussion of quan-
tum fluctuations in the background of the gravitational
field of a black hole, where the quantum radiation ap-
pears to be thermal as shown by Hawking [6]. It was
demonstrated by Unruh [7] that the Hawking phenomenon
should be present in any non-inertial frame; indeed, this is
required by Einstein’s equivalence principle. Then we will
proceed to the process of electron-positron pair produc-
tion in the background electric field, analyzed in QED by
Schwinger [8]. We will see that the Schwinger formula for
the rate of e+e− pair production in a constant electric field
allows for a simple statistical interpretation; moreover, for
the case of a time-dependent field pulse, the spectra of the
produced particles become thermal.

These two examples inspire the picture in which the
thermal character of hadron production emerges from the
interactions with the vacuum chromo-electric field, the
strength of which in the color flux model is parameter-
ized in terms of the string tension, or the slope of Regge
trajectories b. Indeed, we will see how the well-known for-
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mula for the Hagedorn temperature

THagedorn =

√
6

4π

1√
b

(1)

can be derived in this way.
What happens if we create semi-classical color fields

of strength exceeding the strength of the vacuum fields?
This can be achieved in the collisions of heavy ions at high
energies, which are accompanied by a short pulse of the
chromo-electric field E ∼ Q2

s/g of duration τ ∼ Q−1
s ; here

Qs is the saturation scale Qs in the color glass conden-
sate (for a recent review, see [9]), and g is the strong cou-
pling. I will argue that such a strong color field induces the
creation of partons with a distribution which is isotropic
and thermal in a co-moving local frame, with an effective
temperature Tin ' Qs/2π. For high enough energies and
heavy enough nuclei, the value of Tin exceeds the Hage-
dorn temperature; the produced thermal matter is thus in
the deconfined phase. The phase transition in this case can
also be understood in a geometrical picture, in which the
acceleration a ' Qs in the chromo-electric field determines
the curvature of space in the non-inertial Rindler frame.
This is mathematically analogous to the phase transition
induced by the presence of a massive black hole. This talk
is based on the paper with Kirill Tuchin [10], to which I
refer for details and references.

2 Quantum fluctuations in the classical

background

2.1 Black-hole evaporation

In 1974 Hawking [6] demonstrated that black holes evap-
orate by quantum pair production, and behave as if they
have an effective temperature of

TH =
κ

2π
, (2)

where κ = 4M is the acceleration of gravity at the surface
of a black hole of mass M . The thermal character of the
black-hole radiation stems from the presence of the event
horizon, which hides the interior of the black hole from
an outside observer. The rate of pair production in the
gravitational background of a black hole can be evaluated
by considering the tunneling through the event horizon.
Parikh and Wilczek [11] showed that the imaginary part
of the action for this classically forbidden process corre-
sponds to the exponent of the Boltzmann factor describing
the thermal emission1.

Unruh [7] has found that a similar effect arises in a
uniformly accelerated frame, where an observer detects
an apparent thermal radiation with the temperature

TU =
a

2π
; (3)

1 Conservation laws also imply a non-thermal correction to
the emission rate [11], possibly causing a leakage of information
from the black hole.

(a is the acceleration). The event horizon in this case
emerges due to the existence of causally disconnected re-
gions of space-time, conveniently described by using the
Rindler coordinates.

2.2 Pair production in a constant electric field

The effects associated with a heat bath of temperature (3)
usually are not easy to detect because of the smallness of
the acceleration a in realistic experimental conditions. For
example, for the acceleration of gravity on the surface of
Earth g ' 9.8 m s−2 the corresponding temperature is
only T ' 4 × 10−20 K. (The wavelength of the thermal
radiation in this case is about 1 parsec —so it would have
to be detected on a cosmic scale!)

Much larger accelerations can be achieved in electro-
magnetic fields, and Bell and Leinaas [12] considered the
possible manifestations of the Hawking-Unruh effect in
particle accelerators. They argued that the presence of
an apparent heat bath can cause beam depolarization. In-
deed, if the energies of spin-up E↑ and spin-down E↓ states
of a particle in the magnetic field of an accelerator differ
by ∆E = E↑ − E↓, the Hawking-Unruh effect would lead
to the thermal ratio of the occupation probabilities

N↑
N↓
' exp

(

−∆E

TU

)

, (4)

where the Unruh temperature (3) is determined by the
particle acceleration. According to (4), a pure polarization
state of a particle in the accelerator is inevitably diluted
by the acceleration.

If the energy spectrum of an accelerated observer is
continuous, as is the case for a particle of mass m with a
transverse (with respect to the direction of acceleration)
momentum pT , a straightforward extension of (4) leads
to a thermal distribution in the “transverse mass” mT =
√

m2 + p2
T :

Wm(pT ) ∼ exp

(

−mT

TU

)

. (5)

An important example is provided by the dynamics
of charged particles in external electric fields. Consider a
particle of mass m and charge e in an external electric
field of strength E. Under the influence of the Lorentz
force, it moves with an acceleration a = eE/m, and the
corresponding temperature is TU = a/2π. The Boltzman
factor exp(−m/TU ) entering the particle creation rate in
this case is

WE
m ∼ exp

(

−2 πm2

eE

)

. (6)

This expression looks familiar —in fact, (6) differs from
the classic Schwinger result for the rate of particle pro-
duction in a constant electric field only by a factor of two
in the exponent.

Is this a coincidence? To answer this question, let us
have a closer look at the corresponding action:

S =

∫

(−mds − eϕdt ) , (7)



D. Kharzeev: Hawking-Unruh phenomenon in the parton language 85

where ϕ is the electric potential, which for a constant elec-
tric field aligned along the x-axis is ϕ = −Ex modulo
an additive constant; the invariant interval is given by
ds2 = (1 − v2(t)) dt2. Using the equations of motion, we
can evaluate the action to find

S(τ) =

∫ τ

dt (−m
√

1 − v(t)2 + eE x(t))

= −m

a
arcsinh(aτ) +

eE

2a2

×
(

aτ(
√

1 + a2τ2 − 2) + arcsinh(aτ)
)

. (8)

In classical mechanics the equations of motion completely
specify the trajectory of a uniformly accelerating particle

moving under the influence of a constant force ~F = −e∇ϕ.
In contrast, in quantum theory the particle has a fi-
nite probability to be found under the potential barrier
V (x) = eEx in the classically forbidden region. Mathe-
matically, it comes about since the action (8) being an
analytic function of τ has an imaginary part in the Eu-
clidean space

ImS(τ) =
mπ

a
− eE π

2 a2
=

πm2

2 eE
. (9)

The imaginary part of the action (8) corresponds to the
motion of a particle in Euclidean space along the trajec-
tory

x(tE) = a−1

(
√

1 − a2 t2E − 1
)

. (10)

Note that unlike in Minkowski space the Euclidean tra-
jectory is bouncing between the two identical points xa =
−a−1 at tE,a = −a−1 and xb = −a−1 at tE,b = a−1, and
the turning point xa = 0 at tE,a = 0. Using (8) we can
find the Euclidean action between the points a and b; it is
given by SE(x(tE)) = ImS = πm2/2eE.

It is well known that a quasi-classical exponent de-
scribing the decay of a metastable state is given by the
Euclidean action of the bouncing solution (11). The rate of
tunneling under the potential barrier in the quasi-classical
approximation is thus given by

WE
m ∼ exp(−2 ImS) = exp

(

−πm2

eE

)

. (11)

Equation (11) gives the probability to produce a particle
and its antiparticle (each of mass m) out of the vacuum by
a constant electric field E; note that the incorrect factor
of 2 in the exponent of (6) has now disappeared due to
the contribution of the field term in the action (7).

The ratio of the probabilities to produce states of
masses M and m is then

WE
M

WE
m

= exp

(

−π (M2 − m2)

eE

)

. (12)

The relation (12) allows a dual interpretation in terms of
both Unruh and Schwinger effects (see, e.g., [13–15,10]
and references therein). First, consider a detector with

quantum levels m and M moving in a constant electric
field. Each level is accelerated differently, however if the
splitting is not large, M −m ¿ m we can introduce the
average acceleration of the detector

ā =
2 eE

M + m
. (13)

Substituting (13) into (12) we arrive at

WE
M

Wm
= exp

(

2π (M − m)

ā

)

. (14)

This expression is reminiscent of the Boltzmann weight in
a heat bath with an effective temperature (3): T = ā/2π.
It implies that the detector is effectively immersed in a
photon heat bath at temperature T ≈ eE/πm. This is the
renown Unruh effect [7].

It is important to remember that for a constant electric
field the momentum distribution of the produced charged
particles allows a statistical interpretation only in the
transverse to the field direction. However for a short pulse
of an electric field of duration τ ≤ m/(eE) the distribu-
tion becomes thermal in all three directions (see [10] and
references therein) —physically, this happens because the
field has not enough time to perform work on curving the
momenta of the produced particles.

Let us now discuss (12), (11) from the viewpoint of
a field-theoretical derivation done by Schwinger [8]. It is
clear that (11) cannot be expanded neither in powers of
the coupling e, nor in powers of the field E, and so cannot
be reproduced in any finite order of perturbation theory.
Schwinger considered the one-loop QED action describing
the electron-positron fluctuations in the background of the
external electric field E. He has found that the series in the
number of external field insertions indeed diverges (is not
Borel summable). As a result the action ceases to be real,
and develops an imaginary part, similarly to the simple
semi-classical example considered above.

The Hawking-Unruh interpretation therefore appears
to capture an essentially non-perturbative dynamics. In-
deed, a more rigorous treatment (for a review, see,
e.g., [16]) allows to establish that the Bogoliubov trans-
formations relating the particle creation and annihilation
operators in Minkowski and Rindler spaces describe a rear-
rangement of the vacuum structure which cannot be cap-
tured by perturbative series.

3 Event horizon and thermalization in

high-energy hadronic interactions

3.1 Unruh effect, Hagedorn temperature, and parton
saturation

We are now ready to address the case of hadronic inter-
actions at high energies, which is the main subject of this
talk. Consider a high-energy hadron of mass m and mo-
mentum P which interacts with an external field (e.g., an-
other hadron) and transforms into a hadronic final state
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of invariant mass M À m. This transformation is accom-
panied by a change in the longitudinal momentum

qL =
√

E2 −m2 −
√

E2 −M2 ' M2 −m2

2P
, (15)

and therefore by a deceleration; we assumed that the par-
ticle m is relativistic, with energy E ' p.

The probability for a transition to a state with an in-
variant mass M is given by

P (M ← m) = 2π|T (M ← m)|2 ρ(M), (16)

where T (M ← m) is the transition amplitude, and ρ(M)
is the density of hadronic final states. According to the
results of the previous section, we expect that under the
influence of deceleration a which accompanies the change
of momentum (15), the probability |T |2 will be determined
by the Unruh effect and will be given by

|T (M ← m)|2 ∼ exp(−2πM/a) (17)

in the absence of any dynamical correlations; we assume
M À m.

To evaluate the density of states ρ(M), let us first use
the dual resonance model (see, e.g., [17,18]), in which

ρ(M) ∼ exp

(

4π√
6

√
b M

)

, (18)

where b is the universal slope of the Regge trajectories,
related to the string tension σ by the relation σ = 1/(2πb).

The unitarity dictates that the sum of the probabili-
ties (16) over all finite statesM should be finite. Therefore,
by converting the sum into integral over M one can see
that the eqs. (17) and (18) impose the following bound on
the value of acceleration a:

a

2π
≡ T ≤

√
6

4π

1√
b
≡ THagedorn. (19)

The quantity on the r.h.s. of (19) is known as the Hagedorn
temperature [19] —the “limiting temperature of hadronic
matter” derived traditionally from hadron thermodynam-
ics. In our case it stems from the existence of a “limiting
acceleration” a0:

a0 =

√

3

2
b−1/2. (20)

The meaning of the “limiting temperature” in hadron
thermodynamics is well known: above it, hadronic matter
undergoes a phase transition into the deconfined phase, in
which the quarks and gluons become the dynamical de-
grees of freedom. To establish the meaning of the limiting
acceleration (20), let us consider a dissociation of the inci-
dent hadron into a large number nÀ 1 of partons. In this
case the phase space density (18) can be evaluated by the
saddle point method (“statistical approximation”), with
the result (see, e.g., [20])

ρ(M) ∼ exp(βM), (21)

where β−1 is determined by a typical parton momen-
tum in the center-of-mass frame of the partonic config-
uration. When interpreted in partonic language, eq. (18)
thus implies a constant value of mean transverse momen-
tum p̄T ∼ β−1 ∼ b−1/2. On the other hand, in the parton
saturation picture, the mean transverse momentum has to
be associated with the “saturation scale” Qs determined
by the density of partons in the transverse plane within
the wave function of the incident hadron (or a nucleus).
This leads to the phase space density ρ(M) ∼ exp(M/Qs).
The unitarity condition and the formulae (17), (16) thus
lead us to the acceleration a = Qs, which can exceed (20),
and to the conclusion that the final partonic states are
described by a thermal distribution with the temperature

T =
Qs

2π
. (22)

The same result can be obtained by considering the ac-
celeration a = gE/m of a parton with off-shellness m ≡
√

p2 ' Qs in an external color field gE ' Q2
s. It is inter-

esting to note that to exceed the limiting acceleration (20),
and thus the limiting Hagedorn temperature (19) for the
produced hadronic matter, one has to build up strong
color fields, exceeding gE0 ∼ 1/b. This is achieved by
parton saturation in the color glass condensate, when
gE ' Q2

s > gE0 at sufficiently high energies and/or large
mass numbers of the colliding nuclei. Parton saturation
in the initial wave functions thus seems to be a necessary
pre-requisite for the emergence of a thermal deconfined
partonic matter in the final state.

The thermal distribution is built over the time period
of

ttherm ∼ T−1 =
π

Qs
. (23)

As discussed above, this apparent thermalization origi-
nates from the presence of the event horizon in an accel-
erating frame: the incident hadron decelerates in an exter-
nal color field, which causes the emergence of the causal
horizon. Quantum tunneling through this event horizon
then produces a thermal final state of partons, in complete
analogy with the thermal character of quantum radiation
from black holes.

3.2 Production of partons in the classical field as a
Hawking-Unruh phenomenon

The picture presented above at first glance looks com-
pletely orthogonal to the conventional parton model. In-
deed, in parton model the Weizsäcker-Williams gluon
fields surrounding the valence quarks are transverse, with
~E ⊥ ~H ⊥ ~p (~p is the momentum of the quark). The cor-
responding “equivalent gluons” are almost on mass shell,
and no longitudinal chromo-electric field is present: the
gluon field tensor is flat in the longitudinal direction:
F+− = 0 (“+” and “−” refer to the light-cone compo-
nents).

However, a more careful analysis reveals that this pic-
ture is not complete: the configuration of the produced
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gluon field is characterized by F+− 6= 0, with a substan-
tial longitudinal chromo-electric field Ez. In the color glass
condensate picture, the strength of the field is Ez ∼ Q2

s/g,
and the duration of the pulse is ∼ Q−1

s . Note that in the
conventional string model picture, the produced chromo-
electric field is purely longitudinal, with the strength pro-
portional to the string tension. This exhibits a possible
continuity between the string and parton approaches to
multi-particle production, and suggests the existence of
the minimal allowed value of the saturation momentum
Qs min. Basing on the arguments given above and in (19),
one is led to the conclusion that

Qs min = 2πTHagedorn ' 1 GeV. (24)

A quantitative analysis of parton production in the longi-
tudinal chromo-electric field performed in the framework
of the color glass condensate approach is underway [21].

4 Summary

In this talk I have argued that the statistical features of
multi-particle production may emerge as a consequence
of the Hawking-Unruh effect. The acceleration, and the
emergence of the corresponding event horizon for par-
tons, is caused by the pulse of chromo-electric field which
accompanies inelastic interactions at high energies. For
hadron interactions at moderate energies, the effective
temperature appears equal to the Hagedorn tempera-
ture (19). Once the strength of the chromo-electric field
E ∼ Q2

s/g exceeds a critical value determined by (24),
the partons are produced with an effective temperature
T > THagedorn, i.e. in a deconfined state. The subsequent
evolution of the produced partonic system has to be taken
into account in this case.

I wish to thank the Organizers of this Workshop for a most
stimulating and pleasant meeting. I am grateful to K. Tuchin
for sharing the fun of thinking about the problem discussed

here, and to T. Csörgo, G. Dunne, R. Glauber, E. Levin, L.
McLerran, G. Nayak and R. Venugopalan for helpful discus-
sions. This work was supported by the U.S. Department of
Energy under Contract No. DE-AC02-98CH10886.
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